Qixiang He
banner
qixianghe.bsky.social
Qixiang He
@qixianghe.bsky.social
Postdoc @SternbergLab @Columbia,
PhD @LimLab @UW-Madison
Reposted by Qixiang He
1/9 Metagenomics lets us read microbiomes in nature without cultivation, but writing (editing) them in their native context is still a major challenge.

Meet MetaEdit: a platform for pathway-scale metagenomic editing inside the gut microbiome. science.org/doi/10.1126/...
Metagenomic editing of commensal bacteria in vivo using CRISPR-associated transposases
Although metagenomic sequencing has revealed a rich microbial biodiversity in the mammalian gut, methods to genetically alter specific species in the microbiome are highly limited. Here, we introduce ...
science.org
November 14, 2025 at 2:25 PM
Congratulations to all authors! Happy to have contributed to the cryo-EM side. It was a lot of fun learning more about the herpesvirus DNA replication process and how clinical drugs inhibit it 🦠💊. Big thanks to @cijilim.bsky.social and Tahir for the support!
November 10, 2025 at 2:49 AM
Reposted by Qixiang He
The Wilkinson Lab is open for science! @mskcancercenter.bsky.social

🧬We'll be finding funky new RNA biology, mainly by looking at reverse transcriptases (i.e. the Best Enzymes In The World)🧬

annnd: I'm hiring - come join! Especially postdocs and PhD students - please get in touch (NYC is great)
Wilkinson Lab
We discover and study reverse transcriptases
wilkinsonlab.bio
October 31, 2025 at 7:00 PM
Reposted by Qixiang He
Our paper in Science is out! @souravagrawal.bsky.social, @rlynn.bsky.social, @susvirkar.bsky.social, and the rest of the team show human RPA is a telomerase processivity factor essential for telomere maintenance. This reshapes our thinking about telomerase regulation. www.science.org/doi/10.1126/...
Human RPA is an essential telomerase processivity factor for maintaining telomeres
Telomerase counteracts telomere shortening by repeatedly adding DNA repeats to chromosome ends. We identified the replication protein A (RPA) heterotrimer as a telomerase processivity factor critical ...
www.science.org
October 30, 2025 at 10:07 PM
Reposted by Qixiang He
1/10 Genome maintenance by telomerase is a fundamental process in nearly all eukaryotes. But where does it come from?

Today, we report the discovery of telomerase homologs in a family of antiviral RTs, revealing an unexpected evolutionary origin in bacteria.
www.biorxiv.org/content/10.1...
Antiviral reverse transcriptases reveal the evolutionary origin of telomerase
Defense-associated reverse transcriptases (DRTs) employ diverse and distinctive mechanisms of cDNA synthesis to protect bacteria against viral infection. However, much of DRT family diversity remains ...
www.biorxiv.org
October 17, 2025 at 5:22 PM
Reposted by Qixiang He
🧬🌽 Happy Transposon Day! 🌽🧬

Today we celebrate the birthday of Barbara McClintock - scientist extraordinaire and discoverer of jumping genes. Still the only woman to have an unshared Nobel Prize in the biomedical sciences #TransposonDay2025
June 16, 2025 at 3:14 PM
Reposted by Qixiang He
1/10 New pre-print(s) from the Sternberg Lab in collaboration with Leifu Chang's Lab! We uncover the unprecedented molecular mechanism of CRISPR-Cas12f-like proteins, which drive RNA-guided transcription independently of canonical promoter motifs.
Full story here:
www.biorxiv.org/content/10.1...
June 11, 2025 at 4:03 PM
Reposted by Qixiang He
Excited to share a new preprint! Wireless devices use FM modulation to transmit multiplexed noise-resistant data. Led by @born2raisecell.bsky.social, we create a biochemical analogue of this paradigm using genetically encoded oscillators (GEOs) for single-cell FM streaming tinyurl.com/nbs8rw42 🧵
March 4, 2025 at 4:28 PM