#Kantorovich
Pierre Del Moral, Mathieu Gerber: On the Kantorovich contraction of Markov semigroups https://arxiv.org/abs/2511.08111 https://arxiv.org/pdf/2511.08111 https://arxiv.org/html/2511.08111
November 12, 2025 at 6:40 AM
hey guys, some personal news:

I just accepted a new role as Chief Demographer and Econometric Analyst at DoorDash. I am just so excited to be working alongside the best and brightest in the field

I hope to channel my Flaubert, my Poincaré, my Kantorovich, my Dantzig

My current Erdös number is 3!
November 12, 2025 at 3:44 AM
Aya Kantorovich, CEO of August Digital, explains why poor risk management could trigger the next on-chain blowup — and why not all DAATs are created equal.

🎥 Watch the full interview for more insights from Korean Blockchain Week: https://youtu.be/deO4TDjpeiA

#DAATs #KBW
November 10, 2025 at 9:03 PM
Aya Kantorovich says the next frontier for on-chain finance isn’t decentralization — it’s capital efficiency.

At @august_digital, institutions can now cross-margin OTC, DeFi, and exchange positions all in one place.

#onchain #finance #OTC #DeFi
November 10, 2025 at 1:05 PM
arxiv.org/abs/2412.00516
arxiv.org/abs/2511.00232
'Kantorovich-Rubinstein duality theory for the Hessian',
'Sharp inequalities between Zolotarev and Wasserstein distances in P2(ℝd)'
- Karol Bołbotowski, Guy Bouchitté

What can be said about 'higher-order Kantorovich duality'?
November 5, 2025 at 9:55 AM
🔄 Updated Arxiv Paper

Title: Kantorovich-Rubinstein duality theory for the Hessian
Authors: Karol Bo{\l}botowski, Guy Bouchitt\'e

Read more: https://arxiv.org/abs/2412.00516
November 4, 2025 at 11:52 AM
S'il etait encore en vie, inviterait-t'on Léonid Kantorovich (« Nobel » d'économie en '75) pour lui demander si les actions récentes de l'armée russe sont justifiées, lui qui a œuvré pour la défense de Saint-Petersbourg en 39-41 sous les ordres de l'URSS ?
November 4, 2025 at 10:11 AM
Kirill A. Chertoganov (Higher School of Economics), Valery I. Shipalov (Krasnodar Higher Military Aviation School)
High-precision newton-kantorovich method for nonlinear integral equations
https://arxiv.org/abs/2510.27302
November 3, 2025 at 7:00 AM
Kirill A. Chertoganov (Higher School of Economics), Valery I. Shipalov (Krasnodar Higher Military Aviation School): High-precision newton-kantorovich method for nonlinear integral equations https://arxiv.org/abs/2510.27302 https://arxiv.org/pdf/2510.27302 https://arxiv.org/html/2510.27302
November 3, 2025 at 6:39 AM
Das hier ist die Wasserstein-Metrik, aber eigentlich müsste sie ja Kantorovich-, Kantorovich-Rubinstein- oder Monge-Metrik heißen, und wenn sie doch nach Wasserstein benannt werden soll, dann müsste man sie "Vaserstein" schreiben, hehe
a man in a suit and tie is standing in front of a wall with papers on it .
ALT: a man in a suit and tie is standing in front of a wall with papers on it .
media.tenor.com
October 31, 2025 at 6:53 PM
Gergely Bunth, J\'ozsef Pitrik, Tam\'as Titkos, D\'aniel Virosztek: Strong Kantorovich duality for quantum optimal transport with generic cost and optimal couplings on quantum bits https://arxiv.org/abs/2510.26326 https://arxiv.org/pdf/2510.26326 https://arxiv.org/html/2510.26326
October 31, 2025 at 6:44 AM
Strong Kantorovich duality for quantum optimal transport with generic cost and optimal couplings on quantum bits
https://arxiv.org/pdf/2510.26326
Gergely Bunth, József Pitrik, Tamás Titkos, Dániel Virosztek.
https://arxiv.org/abs/2510.26326
arXiv abstract link
arxiv.org
October 31, 2025 at 4:37 AM
Gergely Bunth, J\'ozsef Pitrik, Tam\'as Titkos, D\'aniel Virosztek
Strong Kantorovich duality for quantum optimal transport with generic cost and optimal couplings on quantum bits
https://arxiv.org/abs/2510.26326
October 31, 2025 at 4:30 AM
A Newton-Kantorovich Inverse Function Theorem in Quasi-Metric Spaces http://arxiv.org/abs/2510.23431v1
October 29, 2025 at 9:58 PM
📚 New Arxiv Paper

Title: A Newton-Kantorovich Inverse Function Theorem in Quasi-Metric Spaces
Authors: Titus Pinta

Read more: https://arxiv.org/abs/2510.23431
October 28, 2025 at 11:52 AM
Titus Pinta: A Newton-Kantorovich Inverse Function Theorem in Quasi-Metric Spaces https://arxiv.org/abs/2510.23431 https://arxiv.org/pdf/2510.23431 https://arxiv.org/html/2510.23431
October 28, 2025 at 6:40 AM
Paul Wild, Lutz Schr\"oder, Karla Messing, Barbara K\"onig, Jonas Forster: Generalized Kantorovich-Rubinstein Duality beyond Hausdorff and Kantorovich https://arxiv.org/abs/2510.23552 https://arxiv.org/pdf/2510.23552 https://arxiv.org/html/2510.23552
October 28, 2025 at 6:32 AM
Titus Pinta
A Newton-Kantorovich Inverse Function Theorem in Quasi-Metric Spaces
https://arxiv.org/abs/2510.23431
October 28, 2025 at 4:44 AM
🔄 Updated Arxiv Paper

Title: Benamou-Brenier and Kantorovich on sub-Riemannian manifolds with no abnormal geodesics
Authors: Giovanna Citti, Mattia Galeotti, Andrea Pinamonti

Read more: https://arxiv.org/abs/2507.20959
October 16, 2025 at 8:16 AM
🎉 From the Archives:
Fifty years ago, The Hindu on the 1975 Nobel Prize in #Economics to Prof. Tjalling C. #Koopmans (U.S.) and Prof. Leonid #Kantorovich (Soviet Union).
the optimum allocation of resources: 👏 #NobelPrize #EconSky #EduSky #TheHindu
October 15, 2025 at 1:11 PM
Bravo! (I learned a lot from Dorfman's history of linear optimization when writing on Kantorovich)
Working Paper: The Virtues of Clarity: Robert Dorfman, from Mathematical Programming to Environmental Economics by @juliengradoz.bsky.social @ssrn.bsky.social #econhist

hope.econ.duke.edu/publications...
September 15, 2025 at 7:55 PM
link 📈🤖
Regularized estimation of Monge-Kantorovich quantiles for spherical data () arXiv:2407.02085v1 Announce Type: new
Abstract: Tools from optimal transport (OT) theory have recently been used to define a notion of quantile function for directional data. In practice, regularization is mandat
September 10, 2025 at 1:33 AM
🔄 Updated Arxiv Paper

Title: Bilevel Optimization of the Kantorovich Problem and its Quadratic Regularization Part III: The Finite-Dimensional Case
Authors: Sebastian Hillbrecht

Read more: https://arxiv.org/abs/2406.08992
September 3, 2025 at 8:16 AM
📚 New Arxiv Paper

Title: Benamou-Brenier and Kantorovich are equivalent on sub-Riemannian manifolds with no abnormal geodesics
Authors: Giovanna Citti, Mattia Galeotti, Andrea Pinamonti

Read more: https://arxiv.org/abs/2507.20959
July 29, 2025 at 8:17 AM
Giovanna Citti, Mattia Galeotti, Andrea Pinamonti: Benamou-Brenier and Kantorovich are equivalent on sub-Riemannian manifolds with no abnormal geodesics https://arxiv.org/abs/2507.20959 https://arxiv.org/pdf/2507.20959 https://arxiv.org/html/2507.20959
July 29, 2025 at 6:40 AM