Simone Alma Evans
banner
simone-alma.bsky.social
Simone Alma Evans
@simone-alma.bsky.social
Curious how immune systems differentiate partner from pathogen:
bacteria-phage | macrophage-cancer | orchid-fungi

Genetics PhD candidate @stanford
Formerly orchid ecologist @smithsonian
Pinned
I am so excited to share our project with you! We find prokaryotic proteases activate toxic enzymes and pores as a modular strategy in phage defense. We studied four fascinating protease-toxin pairs that are abundant across bacterial genomes:

www.biorxiv.org/content/10.1...
Proteolytic activation of diverse antiviral defense modules in prokaryotes
Linked protease–effector modules are widespread in prokaryotic antiviral defense, yet the mechanisms of most remain poorly understood. Here we show that four of the most prevalent modules—metallo-β-la...
www.biorxiv.org
Reposted by Simone Alma Evans
Very happy to share our collaborative project on FAM118 proteins - noncanonical sirtuins that form filaments and process NAD in human and other vertebrate cells.
Filament formation and NAD processing by noncanonical human FAM118 sirtuins
Nature Structural & Molecular Biology - Baretić and Missoury et al. identify vertebrate proteins FAM118B and FAM118A as sirtuins similar to bacterial antiphage enzymes and show that...
rdcu.be
November 17, 2025 at 11:37 AM
Reposted by Simone Alma Evans
The Wilkinson Lab is open for science! @mskcancercenter.bsky.social

🧬We'll be finding funky new RNA biology, mainly by looking at reverse transcriptases (i.e. the Best Enzymes In The World)🧬

annnd: I'm hiring - come join! Especially postdocs and PhD students - please get in touch (NYC is great)
Wilkinson Lab
We discover and study reverse transcriptases
wilkinsonlab.bio
October 31, 2025 at 7:00 PM
Reposted by Simone Alma Evans
Beautiful preprint from Simone Evans et al. in Alex Gao's group looking at MBL/nuclease and other cool zymogens (pepco, EACC1) in antiphage defense systems. Great to see this paradigm extended - probably many more proteolytically activated effectors out there...
www.biorxiv.org/content/10.1...
www.biorxiv.org
November 15, 2025 at 10:21 PM
Reposted by Simone Alma Evans
Our nuclease-protease story is out! We explored a fascinating case of coevolution and modularity in prokaryotic immune systems: www.science.org/doi/10.1126/...

Thanks to wonderful coauthors/collaborators/friends, the whole @doudna-lab.bsky.social and everyone at @innovativegenomics.bsky.social
Recurrent acquisition of nuclease-protease pairs in antiviral immunity
Antiviral immune systems diversify by integrating new genes into existing pathways, creating new mechanisms of viral resistance. We identified genes encoding a predicted nuclease paired with a trypsin...
www.science.org
November 13, 2025 at 10:15 PM
I am so excited to share our project with you! We find prokaryotic proteases activate toxic enzymes and pores as a modular strategy in phage defense. We studied four fascinating protease-toxin pairs that are abundant across bacterial genomes:

www.biorxiv.org/content/10.1...
Proteolytic activation of diverse antiviral defense modules in prokaryotes
Linked protease–effector modules are widespread in prokaryotic antiviral defense, yet the mechanisms of most remain poorly understood. Here we show that four of the most prevalent modules—metallo-β-la...
www.biorxiv.org
November 15, 2025 at 11:49 PM