✨ Remarkably, yet the long-run average number of agents on route 1 settles on the social-optimum / Nash equilibrium (bottom right) ⛳️, despite the day-to-day head-count of route 1 being provably chaotic (bottom left)! 🌪️
✨ Remarkably, yet the long-run average number of agents on route 1 settles on the social-optimum / Nash equilibrium (bottom right) ⛳️, despite the day-to-day head-count of route 1 being provably chaotic (bottom left)! 🌪️
Results: When some agents learn (adapt) very fast, their individual strategies turn chaotic 🌪️. Top panel - x axis: agent type with different learning rates, y-axis fraction of that agent selecting route 1.
Results: When some agents learn (adapt) very fast, their individual strategies turn chaotic 🌪️. Top panel - x axis: agent type with different learning rates, y-axis fraction of that agent selecting route 1.