To stat mech crowd: think of congestion games as out-of-equilibrium many-body active matter.
.
This is an exactly solvable active system (multi-agent RL) where microscopic chaos coexists with macroscopic ergodic convergence - check it out!
www.pnas.org/doi/10.1073/...
To stat mech crowd: think of congestion games as out-of-equilibrium many-body active matter.
.
This is an exactly solvable active system (multi-agent RL) where microscopic chaos coexists with macroscopic ergodic convergence - check it out!
www.pnas.org/doi/10.1073/...
✨ Remarkably, yet the long-run average number of agents on route 1 settles on the social-optimum / Nash equilibrium (bottom right) ⛳️, despite the day-to-day head-count of route 1 being provably chaotic (bottom left)! 🌪️
✨ Remarkably, yet the long-run average number of agents on route 1 settles on the social-optimum / Nash equilibrium (bottom right) ⛳️, despite the day-to-day head-count of route 1 being provably chaotic (bottom left)! 🌪️
Results: When some agents learn (adapt) very fast, their individual strategies turn chaotic 🌪️. Top panel - x axis: agent type with different learning rates, y-axis fraction of that agent selecting route 1.
Results: When some agents learn (adapt) very fast, their individual strategies turn chaotic 🌪️. Top panel - x axis: agent type with different learning rates, y-axis fraction of that agent selecting route 1.
Feedbacks are welcome!
Paper --> arxiv.org/abs/2501.08998
Feedbacks are welcome!
Paper --> arxiv.org/abs/2501.08998