From raw data to publication-ready figures.
#r #rstats #dataviz #healthdata #posit #positron
My goal is to make medical statistics clear, reproducible, and interpretable.
#rstats #biostatistics #healthdata
It’s about estimating effects and uncertainty.
#rstats #biostatistics
It’s about estimating effects and uncertainty.
#rstats #biostatistics
My goal is to make medical statistics clear, reproducible, and interpretable.
#rstats #biostatistics #healthdata
My goal is to make medical statistics clear, reproducible, and interpretable.
#rstats #biostatistics #healthdata
R makes effect sizes and uncertainty easier to report.
#rstats #biostats #medicalstats
R makes effect sizes and uncertainty easier to report.
#rstats #biostats #medicalstats
R encourages transparent workflows from raw data to results.
#rstats #healthdata #clinicalresearch
R encourages transparent workflows from raw data to results.
#rstats #healthdata #clinicalresearch
gtsummary saves time without sacrificing rigor.
#rstats #gtsummary #clinicaldata
gtsummary saves time without sacrificing rigor.
#rstats #gtsummary #clinicaldata
gtsummary supports transparent and defensible medical statistics.
#rstats #gtsummary #openscience
gtsummary supports transparent and defensible medical statistics.
#rstats #gtsummary #openscience
gtsummary turns complex medical data into interpretable summaries.
#rstats #healthdata #medicalstats
gtsummary turns complex medical data into interpretable summaries.
#rstats #healthdata #medicalstats
With gtsummary, tables stay aligned across analyses and revisions.
#rstats #clinicalresearch #reproducibility
With gtsummary, tables stay aligned across analyses and revisions.
#rstats #clinicalresearch #reproducibility
gtsummary helps reviewers focus on results, not table formatting.
#rstats #gtsummary #peerreview #biostatistics
gtsummary helps reviewers focus on results, not table formatting.
#rstats #gtsummary #peerreview #biostatistics
gtsummary keeps medical statistics clean, consistent, and publication-ready.
#rstats #gtsummary #clinicalresearch #researchtools
gtsummary keeps medical statistics clean, consistent, and publication-ready.
#rstats #gtsummary #clinicalresearch #researchtools
gtsummary supports standardized summaries and regression outputs in medical studies.
#rstats #gtsummary #clinicaldata #openscience
gtsummary supports standardized summaries and regression outputs in medical studies.
#rstats #gtsummary #clinicaldata #openscience
gtsummary bridges statistical analysis and scientific communication.
#rstats #biostats #scicomm #medicalstats
gtsummary bridges statistical analysis and scientific communication.
#rstats #biostats #scicomm #medicalstats
With gtsummary, clinical summary and regression tables stay transparent and consistent.
#rstats #healthdata #reproducibleresearch
With gtsummary, clinical summary and regression tables stay transparent and consistent.
#rstats #healthdata #reproducibleresearch
trial |> tbl_summary(by = trt,
statistic = all_continuous() ~ "{median} [{p25},{p75}]") |> add_p()
#rstats #biostats #reproducibleresearch
trial |> tbl_summary(by = trt,
statistic = all_continuous() ~ "{median} [{p25},{p75}]") |> add_p()
#rstats #biostats #reproducibleresearch
trial |> tbl_summary(by = trt, include = c(age, grade, response, marker)) |> add_n()
#rstats #healthdata #medicalstats
trial |> tbl_summary(by = trt, include = c(age, grade, response, marker)) |> add_n()
#rstats #healthdata #medicalstats
trial |> tbl_summary(by=trt) |> add_p() |> add_overall()
#rstats #gtsummary #biostatistics #clinicalresearch #posit
trial |> tbl_summary(by=trt) |> add_p() |> add_overall()
#rstats #gtsummary #biostatistics #clinicalresearch #posit
gtsummary helps turn raw clinical data into reproducible, publication-ready results—without manual formatting.
#rstats #gtsummary #biostatistics #clinicalresearch
gtsummary helps turn raw clinical data into reproducible, publication-ready results—without manual formatting.
#rstats #gtsummary #biostatistics #clinicalresearch
fit <- survfit(Surv(time, status) ~ group, data = surv_data)
km_plot <- ggsurvplot()
#RStats #DataScience #Biostatistics #DataVisualization #RStudio
#Statistics #ggplot2
fit <- survfit(Surv(time, status) ~ group, data = surv_data)
km_plot <- ggsurvplot()
#RStats #DataScience #Biostatistics #DataVisualization #RStudio
#Statistics #ggplot2
#rstats #gtsummary #biostatistics #clinicalresearch
#rstats #gtsummary #biostatistics #clinicalresearch
data(trial)
trial |>
tbl_summary(
by = trt,
statistic = all_continuous() ~ "{mean} ({sd})"
) |>
add_p() |>
add_overall()
data(trial)
trial |>
tbl_summary(
by = trt,
statistic = all_continuous() ~ "{mean} ({sd})"
) |>
add_p() |>
add_overall()
gtsummary turns clinical & biostat data into clean, reproducible summary and regression tables. Perfect for papers & reports.
www.danieldsjoberg.com/gtsummary/
#rstats #gtsummary #biostatistics #healthdata #dataviz
gtsummary turns clinical & biostat data into clean, reproducible summary and regression tables. Perfect for papers & reports.
www.danieldsjoberg.com/gtsummary/
#rstats #gtsummary #biostatistics #healthdata #dataviz