Huge thanks to my supervisor @jan-peters.bsky.social and all my collaborators.
Can't wait to join the NVIDIA Seattle Robotics Lab for my internship next summer! 🤖
blogs.nvidia.com/blog/graduat...
Huge thanks to my supervisor @jan-peters.bsky.social and all my collaborators.
Can't wait to join the NVIDIA Seattle Robotics Lab for my internship next summer! 🤖
blogs.nvidia.com/blog/graduat...
If you are interested in sample-efficient #RL, check out our work:
Scaling Off-Policy Reinforcement Learning with Batch and Weight Normalization
We propose CrossQ+WN, a simple yet powerful off-policy RL for more sample-efficiency and scalability to higher update-to-data ratios. 🧵 t.co/Z6QrMxZaPY
#RL @ias-tudarmstadt.bsky.social
✅ ~4.5× fewer parameters than SimbaV2
✅ Scales to vision-based RL
👉 arxiv.org/pdf/2509.25174
Thanks to Florian Vogt @joemwatson.bsky.social @jan-peters.bsky.social
✅ ~4.5× fewer parameters than SimbaV2
✅ Scales to vision-based RL
👉 arxiv.org/pdf/2509.25174
Thanks to Florian Vogt @joemwatson.bsky.social @jan-peters.bsky.social
We propose CrossQ+WN, a simple yet powerful off-policy RL for more sample-efficiency and scalability to higher update-to-data ratios. 🧵 t.co/Z6QrMxZaPY
#RL @ias-tudarmstadt.bsky.social
We propose CrossQ+WN, a simple yet powerful off-policy RL for more sample-efficiency and scalability to higher update-to-data ratios. 🧵 t.co/Z6QrMxZaPY
#RL @ias-tudarmstadt.bsky.social
Shoutout @nicobohlinger.bsky.social, Jonathan Kinzel.
@ias-tudarmstadt.bsky.social @hessianai.bsky.social
We train an omnidirectional locomotion policy directly on a real quadruped in just a few minutes 🚀
Top speeds of 0.85 m/s, two different control approaches, indoor and outdoor experiments, and more! 🤖🏃♂️
Shoutout @nicobohlinger.bsky.social, Jonathan Kinzel.
@ias-tudarmstadt.bsky.social @hessianai.bsky.social