Cédric Bounya
banner
cbounya.bsky.social
Cédric Bounya
@cbounya.bsky.social
Ça fait des années que je pense que la diagonalisation des endomorphismes, c'est pas vraiment très efficace algébriquement pour calculer les puissances d'un endomorphisme.

Il vaut mieux utiliser les polynômes d'interpolation de Lagrange, en fait.
February 13, 2025 at 12:36 PM
January 29, 2025 at 9:37 PM
La partie 2 est super intéressante !

Pour l'instant je gribouille...

I've completed Part One of "Crossed Wires" - Day 24 - Advent of Code 2024 adventofcode.com/2024/day/24 #AdventOfCode
December 24, 2024 at 11:27 AM
Eh oui, en effet, c'est BEAUCOUP plus rapide de calculer les secret numbers et en même temps, tenir la comptabilité de tous les codes au fil de l'eau !

6.5 secondes.

(code en alt-text)
December 23, 2024 at 4:16 PM
Par contre, j'ai pas compris ton dénombrement de 19⁴ = 130321.

Des séquences qui sont effectivement susceptibles d'apparaître, il y en a bien 40951.

Une séquence comme (3,3,3,3) ne peut pas apparaître avec des chiffres de 0 à 9 par exemple.
December 22, 2024 at 11:14 PM
Ah c'est pas trop difficile de faire la heatmap.

stackoverflow.com/a/33282548
December 20, 2024 at 11:58 AM
Parce que chaque *design* n'a que 8 préfixes candidats, et que les tests d'appartenance sont plus rapides que la boucle de tests d'égalité correspondante.
December 19, 2024 at 7:11 PM
Hi hi hi !

Tu frimes un peu, là !

Je propose la méthode doable2 qui est 100 fois plus rapide.
December 19, 2024 at 4:21 PM
Moi ma machine faisait ça :

Tant que A est non nul, remplacer A par f(A) et retourner B.

(interprétée avec mes yeux et mes doigts)

Chaque tour de la boucle dépend des 10 derniers bits de A, et détruit les 3 derniers bits de A.
December 18, 2024 at 5:38 PM
😆

Bien vu !

Chacun sait en effet que la première étape de l'ébeniste est la contemplation de l'idée abstraite, immatérielle et unique de ✨LIT💫 avant de se mettre au travail.

Ensuite, c'est le peintre qui prend le relais.
December 17, 2024 at 4:40 PM
Ce ne sont pas les maths que tu détestes.

Ce que tu détestes, c'est ton manque de maths quand il t'en faudrait.
December 14, 2024 at 11:38 AM
Mignon comme tout.

Je suis maintenant l'heureux propriétaire d'un fichier texte de 105 Mo dans lequel il y a quelque part un très joli sapin !

I just completed "Restroom Redoubt" - Day 14 - Advent of Code 2024 #AdventOfCode adventofcode.com/2024/day/14
December 14, 2024 at 10:30 AM
Clarifié, simplifié.

Première fois de ma vie que j'arrive à faire un Walrus qui fonctionne ! 😋

(Apparemment, c'est les parenthèses random qui permettent le truc sinon, message d'erreur !)
December 13, 2024 at 7:53 PM
Plus de travail à l'acquisition qu'à la résolution.

(un post sur Reddit fait remarquer qu'il n'y a pas de raison de faire l'acquisition programmatiquement, et qu'on peut très bien la faire dans son éditeur de texte favori !)
December 13, 2024 at 2:04 PM
Tiens quelqu'un (SimonK1605) a fait une animation !

www.reddit.com/r/adventofco...
December 13, 2024 at 10:31 AM
Par contre, c'est intrigant que le sol soit pavé d'hexagones... 🧐
December 13, 2024 at 10:24 AM
J'ai entendu dire ça, mais j'y connais rien ! Faudra que je me renseigne.

Finalement, j'ai fait un dictionnaire de fonctions.

Je pense que ça revient un peu au même qu'un match case.
December 11, 2024 at 5:51 PM
Ouf, ça va un peu mieux !
December 11, 2024 at 5:50 PM
Merci de la recommandation.

Je viens de faire le jour 5.

Je crois que ce serait bien de ré-usiner le code avant de passer à la suite ! 😅
December 11, 2024 at 5:23 PM
Hi hi hi !

Quel petit menteur ! 😅

Il n'a des données que jusqu'à septembre 2021, mais sait que c'est le problème du 8 décembre 2021.
December 8, 2024 at 2:15 AM
Tiens ChatGPT a été plus malin que moi !

(bon, après, c'est un problème de 2021, peut-être qu'il le connaissait déjà explicitement !)
December 8, 2024 at 2:09 AM
Ce problème de 2021 est SUPER FUN !

Chaudement recommandé.

I've completed "Seven Segment Search" - Day 8 - Advent of Code 2021 adventofcode.com/2021/day/8 #AdventOfCode
December 7, 2024 at 9:59 PM
Oui exactement : (et apparemment c'était le défaut dans Python2 mais ils ont changé alors que c'est moins souple maintenant, je crois ?)

J'avais juste fabriqué un dico r des règles avec tous les successeurs b de chaque clé a dans une liste.

stackoverflow.com/a/57003713
December 5, 2024 at 9:19 PM
Un peu spoiler, mais j'apprends sur Reddit comment ça marche :

Il y a 49 items, et chacun a 24 successeurs.

Pour chaque couple, l'un unique est successeur de l'autre.

Si on les code par des lettres, et qu'on trie tout, on voit ça :
December 5, 2024 at 4:40 PM
Je suis stupéfait que ChatGPT sache faire ça avec autant de facilité.

Les programmeurs (les profs de maths ?) ont vraiment du souci à se faire.
December 4, 2024 at 12:38 PM