and colleagues present Graphinity, a method to predict change in antibody-antigen binding affinity (∆∆G). Also featuring synthetic datasets of ~1 million FoldX-generated and >20,000 Rosetta Flex ddG-generated ∆∆G values!
www.nature.com/articles/s43...
GitHub: github.com/oxpig/Graphi...
Zenodo (code): doi.org/10.5281/zeno...
Zenodo (data): doi.org/10.5281/zeno...
OPIG (data): opig.stats.ox.ac.uk/data/downloa...
GitHub: github.com/oxpig/Graphi...
Zenodo (code): doi.org/10.5281/zeno...
Zenodo (data): doi.org/10.5281/zeno...
OPIG (data): opig.stats.ox.ac.uk/data/downloa...
📊 Generation of a second synthetic dataset using Rosetta Flex ddG (20,829 ΔΔG values)
🕸️ Evaluation of additional ML architectures (incl. FLAML, CNN, Rotamer Density Estimate, Equiformer)
📊 Generation of a second synthetic dataset using Rosetta Flex ddG (20,829 ΔΔG values)
🕸️ Evaluation of additional ML architectures (incl. FLAML, CNN, Rotamer Density Estimate, Equiformer)
We show that orders of magnitude more data will be needed to unlock generalizable ΔΔG prediction. Our findings provide a lower bound on data requirements to inform future method development & data collection.
We show that orders of magnitude more data will be needed to unlock generalizable ΔΔG prediction. Our findings provide a lower bound on data requirements to inform future method development & data collection.
Special thanks to Charlotte Deane & @opig.stats.ox.ac.uk, @deboramarks.bsky.social, Madan Babu, @pstansfeld.bsky.social, @rdaslab.bsky.social
Special thanks to Charlotte Deane & @opig.stats.ox.ac.uk, @deboramarks.bsky.social, Madan Babu, @pstansfeld.bsky.social, @rdaslab.bsky.social