Sophia Becker
sobeckerneuro.bsky.social
Sophia Becker
@sobeckerneuro.bsky.social
PhD student in computational neuroscience at EPFL, supervised by Wulfram Gerstner @gerstnerlab.bsky.social‬ | Working on computational models of intrinsic motivation, exploration and learning, with a special love for novelty✨
Reposted by Sophia Becker
So happy to see this work out! 🥳
Huge thanks to our two amazing reviewers who pushed us to make the paper much stronger. A truly joyful collaboration with @lucasgruaz.bsky.social, @sobeckerneuro.bsky.social, and Johanni Brea! 🥰

Tweeprint on an earlier version: bsky.app/profile/modi... 🧠🧪👩‍🔬
Merits of Curiosity: A Simulation Study
Abstract‘Why are we curious?’ has been among the central puzzles of neuroscience and psychology in the past decades. A popular hypothesis is that curiosity is driven by intrinsically generated reward signals, which have evolved to support survival in complex environments. To formalize and test this hypothesis, we need to understand the enigmatic relationship between (i) intrinsic rewards (as drives of curiosity), (ii) optimality conditions (as objectives of curiosity), and (iii) environment structures. Here, we demystify this relationship through a systematic simulation study. First, we propose an algorithm to generate environments that capture key abstract features of different real-world situations. Then, we simulate artificial agents that explore these environments by seeking one of six representative intrinsic rewards: novelty, surprise, information gain, empowerment, maximum occupancy principle, and successor-predecessor intrinsic exploration. We evaluate the exploration performance of these simulated agents regarding three potential objectives of curiosity: state discovery, model accuracy, and uniform state visitation. Our results show that the comparative performance of each intrinsic reward is highly dependent on the environmental features and the curiosity objective; this indicates that ‘optimality’ in top-down theories of curiosity needs a precise formulation of assumptions. Nevertheless, we found that agents seeking a combination of novelty and information gain always achieve a close-to-optimal performance on objectives of curiosity as well as in collecting extrinsic rewards. This suggests that novelty and information gain are two principal axes of curiosity-driven behavior. These results pave the way for the further development of computational models of curiosity and the design of theory-informed experimental paradigms.
dlvr.it
August 25, 2025 at 4:18 PM
Reposted by Sophia Becker
Excited to share new work led by @vivekmyers.bsky.social and @crji.bsky.social that proves you can learn to reach distant goals by solely training on nearby goals. The key idea is a new form of invariance. This invariance implies generalization w.r.t. the horizon.
Reinforcement learning agents should be able to improve upon behaviors seen during training.
In practice, RL agents often struggle to generalize to new long-horizon behaviors.
Our new paper studies *horizon generalization*, the degree to which RL algorithms generalize to reaching distant goals. 1/
February 6, 2025 at 1:13 AM
Stoked to be at RLDM! Curious how novelty and exploration are impacted by generalization across similar stimuli? Then don't miss my flash talk in the PIMBAA workshop (tmr at 10:30, E McNabb Theatre) or stop by my poster tmr (#74)! Looking forward to chat 🤩

www.biorxiv.org/content/10.1...
Representational similarity modulates neural and behavioral signatures of novelty
Novelty signals in the brain modulate learning and drive exploratory behaviors in humans and animals. While the perceived novelty of a stimulus is known to depend on previous experience, the effect of...
www.biorxiv.org
June 11, 2025 at 8:41 PM