When x=0, b^x > x^b (1>0)
When x=b, b^x = x^b
When x→∞, b^x > x^b
So graphs touch/cross at x=b
When b<e, graphs cross at/after x=b (b=2 crosses at 2 & 4)
When b>e, graphs cross before/at x=b (b=4 crosses at 2 & 4)
So π^x<x^π when x≲π
When x=0, b^x > x^b (1>0)
When x=b, b^x = x^b
When x→∞, b^x > x^b
So graphs touch/cross at x=b
When b<e, graphs cross at/after x=b (b=2 crosses at 2 & 4)
When b>e, graphs cross before/at x=b (b=4 crosses at 2 & 4)
So π^x<x^π when x≲π
P(1ace):2/6*4/5+4/6*2/5=16/30
P(2aces):2/6*1/5=2/30
P(1ace):2/6*4/5+4/6*2/5=16/30
P(2aces):2/6*1/5=2/30