We’re happy to present a new preprint from the lab, where we identify new mechanisms that drive the recruitment of Mre11 to recombination sites during meiosis. Work led by star student Priyanka Priyadarshini with help from colleagues and funded by the ERC and FNRS.
www.biorxiv.org/content/10.1...
Recruitment of Mre11 to recombination sites during meiosis
The Mre11 nuclease, part of the conserved MRX complex involved in the repair of DNA double-strand breaks (DSBs), is also essential to initiate meiotic recombination in budding yeast by promoting Spo11-induced DSBs. Recruitment of Mre11 to meiotic DSB sites depends on Rec114-Mei4 and Mer2 (RMM) that organize the meiotic DSB machinery by a mechanism involving biomolecular condensation. Here, we explored the role of Mre11 during meiosis and its relationship to RMM condensation. We show that both Mre11 and MRX complexes form DNA-dependent, hexanediol sensitive condensates in vitro. In vivo, Mre11 assembles into DNA damage-dependent foci in vegetative cells and DSB-independent foci in meiotic cells. In vitro condensates and in vivo foci both depend on the C-terminal intrinsically-disordered region (IDR) of Mre11. Importantly, while the Mre11 IDR is dispensable for vegetative DNA repair it is essential during meiosis. The C-terminus of Mre11 forms a short alpha-helix that binds a conserved region of Mer2, and mutating residues within this interface reduces Mre11 foci and DSB formation. Finally, we identified a SUMO-interacting motif within the Mre11 IDR that enhances recruitment of Mre11 during meiosis and facilitates DSB formation. This work identifies multiple mechanisms that collaborate to recruit Mre11 during meiosis to initiate recombination. ### Competing Interest Statement The authors have declared no competing interest. European Research Council, 802525 Fonds National de la Recherche Scientifique, Bruxelles, BE, T.0031.22 Research Council VUB, SRP95, OZR3939 National Institute of Health, US, R01GM074223