Staff Scientist at Lawrence Berkeley National Laboratory
https://hackingmaterials.lbl.gov
All views my own
Isotta et al.,
Adv. Funct. Mater.
doi.org/10.1002/adfm...
Isotta et al.,
Adv. Funct. Mater.
doi.org/10.1002/adfm...
Becker et al., J. Open Source Softw.
doi.org/10.21105/jos...
Becker et al., J. Open Source Softw.
doi.org/10.21105/jos...
Work with KIT/UCB on self-supervised ConvNeXtV2 achieves ~41% error reduction over untrained models (15% vs ImageNet) for particle segmentation using 25k SEM images.
Rettenberger et al., npj Comp Mater
doi.org/10.1038/s415...
Work with KIT/UCB on self-supervised ConvNeXtV2 achieves ~41% error reduction over untrained models (15% vs ImageNet) for particle segmentation using 25k SEM images.
Rettenberger et al., npj Comp Mater
doi.org/10.1038/s415...
Check out the DOE SCGSR program: science.osti.gov/wdts/scgsr
If interested and eligible, please reach out!
Check out the DOE SCGSR program: science.osti.gov/wdts/scgsr
If interested and eligible, please reach out!
Apply here 👉 jobs.lbl.gov/jobs/postdoc...
#AI #MaterialsScience #PostdocJobs
Apply here 👉 jobs.lbl.gov/jobs/postdoc...
#AI #MaterialsScience #PostdocJobs
Wang et al., AI for Sci.
doi.org/10.1088/3050...
Wang et al., AI for Sci.
doi.org/10.1088/3050...
Horton et al, Nature Materials
doi.org/10.1038/s415...
Horton et al, Nature Materials
doi.org/10.1038/s415...
@virtualatoms.bsky.social et al., Digital Discovery
doi.org/10.1039/D5DD...
@virtualatoms.bsky.social et al., Digital Discovery
doi.org/10.1039/D5DD...
Riebesell et al., Nat. Mach. Intell.
doi.org/10.1038/s422...
Riebesell et al., Nat. Mach. Intell.
doi.org/10.1038/s422...
Li et al, IEEE PVSC
https://doi.org/10.1109/PVSC48320.2023.10359868
Li et al, IEEE PVSC
https://doi.org/10.1109/PVSC48320.2023.10359868
Hao et al, Nano Lett.
https://doi.org/10.1021/acs.nanolett.4c06344
Hao et al, Nano Lett.
https://doi.org/10.1021/acs.nanolett.4c06344
Baibakova & Cruse et al, Digital Discovery
https://doi.org/10.1039/d5dd00160a
Baibakova & Cruse et al, Digital Discovery
https://doi.org/10.1039/d5dd00160a
Lee et al, Digital Discovery
https://doi.org/10.1039/d4dd00158c
Lee et al, Digital Discovery
https://doi.org/10.1039/d4dd00158c
Fei & Rendy et al, Digital Discovery
https://doi.org/10.1039/d4dd00129j
Fei & Rendy et al, Digital Discovery
https://doi.org/10.1039/d4dd00129j
Chen & Li et al, Appl. Energy
https://doi.org/10.1016/j.apenergy.2025.126132
Chen & Li et al, Appl. Energy
https://doi.org/10.1016/j.apenergy.2025.126132
Jain, Curr Opinion Sol State & Mat Sci
https://doi.org/10.1016/j.cossms.2024.101189
Jain, Curr Opinion Sol State & Mat Sci
https://doi.org/10.1016/j.cossms.2024.101189
Zhu et al, npj Comp Mat
https://doi.org/10.1038/s41524-024-01437-w
Zhu et al, npj Comp Mat
https://doi.org/10.1038/s41524-024-01437-w
https://science.osti.gov/wdts/scgsr/
(program restricted to U.S. citizen & permanent residents)
https://science.osti.gov/wdts/scgsr/
(program restricted to U.S. citizen & permanent residents)
https://www.youtube.com/playlist?list=PL7gkuUui8u7_M47KrV4tS4pLwhe7mDAjT
https://www.youtube.com/playlist?list=PL7gkuUui8u7_M47KrV4tS4pLwhe7mDAjT
Li et al, Renewable Energy
https://doi.org/10.1016/j.renene.2024.121493
Li et al, Renewable Energy
https://doi.org/10.1016/j.renene.2024.121493
Pei et al, Nature Reviews Materials
https://doi.org/10.1038/s41578-024-00726-6
Pei et al, Nature Reviews Materials
https://doi.org/10.1038/s41578-024-00726-6
Ma et al, ACS Appl Energy Mater
https://doi.org/10.1021/acsaem.4c00631
Ma et al, ACS Appl Energy Mater
https://doi.org/10.1021/acsaem.4c00631
Dagdelen et al, Nat Comm
https://doi.org/10.1038/s41467-024-45563-x
Dagdelen et al, Nat Comm
https://doi.org/10.1038/s41467-024-45563-x
Cruse et al, Chem Mat
https://doi.org/10.1021/acs.chemmater.3c02203
Cruse et al, Chem Mat
https://doi.org/10.1021/acs.chemmater.3c02203