Dimitris Koukoulopoulos
iteratedlog.bsky.social
Dimitris Koukoulopoulos
@iteratedlog.bsky.social
Number theorist at UMontreal, author of “The Distribution of Prime Numbers” http://bookstore.ams.org/gsm-203
1/19 I wrote recently a new paper that I’m very excited about, so I would like to explain what it is about. It is joint with Y. Lamzouri and J. D. Lichtman, and it concerns a question of Erdös from back in the day when he worked on primitive sets. arxiv.org/abs/2502.09539
Erdős's integer dilation approximation problem and GCD graphs
Let $\mathcal{A}\subset\mathbb{R}_{\geqslant1}$ be a countable set such that $\limsup_{x\to\infty}\frac{1}{\log x}\sum_{α\in\mathcal{A}\cap[1,x]}\frac{1}α>0$. We prove that, for every $\varepsilon>0$,...
arxiv.org
February 18, 2025 at 2:30 AM
Reposted by Dimitris Koukoulopoulos
I've recently been talking a bit about how difficult it is to carefully check even well-written mathematics. I want to try to explain something about this by telling the story of some errors in the literature that (in part) led to the two papers below. 1/n
January 1, 2025 at 10:28 PM