Zoonotic hepatitis E virus spreads through environmental routes in pig herds–A phylodynamic analysis
by Marina Meester, Cecilia Valenzuela Agüí, Tijs J. Tobias, Renate W. Hakze van der Honing , Claire Guinat, Martijn Bouwknegt, Louis du Plessis, Egil A.J. Fischer, Mirlin Spaninks, Tanja Stadler, Wim H.M. van der Poel, Arjan Stegeman
Worldwide, many pig farms are affected by hepatitis E virus (HEV) genotype 3, a zoonotic virus that causes hepatitis in humans. People can become infected after eating contaminated pork, making HEV control in pig farms crucial for public health. However, knowledge of HEV transmission dynamics and control options within farms is limited. Our findings reveal that HEV persists in the farm environment, enabling transmission between pigs separated in space and time. We investigated HEV transmission on two Dutch finishing farms for nine months in 2022. In both farms, samples from three compartments (confined rooms), holding 12 pens with pigs each, were collected and tested weekly across three batches (consecutively housed groups of pigs). Additionally, at least one sample per HEV-positive pen was sequenced per batch, retrieving 89 near-complete sequences. We integrated epidemiological data on duration and timing of infection with phylogenetic data to quantify transmission. We observed phylogenetic clustering of pens per compartment in both farms. In farm A, some sequences from different compartments and different batches also clustered, suggesting transmission between pigs housed separately. In farm B, only one compartment became HEV-positive during one batch. Within that compartment, between-pen transmission was efficient, with an effective reproduction number (Re) of 3.6 (95% HPD interval 1.3–6.7). The other compartments and batch may have remained HEV-negative thanks to stringent biosecurity measures applied on that farm. In farm A, the Re’s for transmission between pens within and across compartments were not significantly above 1, yet all sampled pens became positive in all batches. A combination of transmission routes, in conjunction with persistence of HEV in the environment, is required to explain why all pens tested positive. These findings show not only how HEV effectively spreads without pigs sharing housing, yet also that reduction of HEV’s zoonotic risk may be achieved by improved biosecurity within farms.