Create synthetic data pipelines with easy!
- Retries and caching included
- inference via LiteLLM, vLLM, and popular batch APIs
- asynchronous operations
🔗 URL: buff.ly/ajPRT1l
Create synthetic data pipelines with easy!
- Retries and caching included
- inference via LiteLLM, vLLM, and popular batch APIs
- asynchronous operations
🔗 URL: buff.ly/ajPRT1l
𝐯𝐋𝐋𝐌 𝐟𝐨𝐫 𝐁𝐞𝐠𝐢𝐧𝐧𝐞𝐫𝐬 𝐏𝐚𝐫𝐭 𝟑:📖 𝐃𝐞𝐩𝐥𝐨𝐲𝐦𝐞𝐧𝐭 𝐎𝐩𝐭𝐢𝐨𝐧𝐬
Learn to deploy #vLLM everywhere! Even on CPU🤫
✅Platform & model Support Matrix
✅Install on GPU & CPU
✅Build Wheel from scratch | Python vLLM package
✅Docker/Kubernetes Deployment
✅Running vLLM server (Offline + Online inference)
💎What makes #VLLM the Rolls Royce of inference? 👇🏻check our new blog, where we break it down in 5 performance-packed layers😎#TherYouGo
𝐯𝐋𝐋𝐌 𝐟𝐨𝐫 𝐁𝐞𝐠𝐢𝐧𝐧𝐞𝐫𝐬 𝐏𝐚𝐫𝐭 𝟐:📖𝐊𝐞𝐲 𝐅𝐞𝐚𝐭𝐮𝐫𝐞𝐬 & 𝐎𝐩𝐭𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧s
💎 What makes #vLLM the Rolls Royce of inference?
👉check it out: cloudthrill.ca/what-is-vllm...
✅ #PagedAttention #PrefixCaching #ChunkedPrefill
✅ #SpeculativeDecoding #FlashAttention #lmcache
✅ Tensor & #PipelineParallelism⚡
Origin | Interest | Match
@reach_vb:
Letsss gooo! DeepSeek just released a 3B OCR model on Hugging Face 🔥 Optimised to be token efficient AND scale ~200K+ pages/day on A100-40G Same arch as DeepSeek VL2 Use it with Transformers, vLLM and more 🤗 https://huggingface.co/...
@reach_vb:
Letsss gooo! DeepSeek just released a 3B OCR model on Hugging Face 🔥 Optimised to be token efficient AND scale ~200K+ pages/day on A100-40G Same arch as DeepSeek VL2 Use it with Transformers, vLLM and more 🤗 https://huggingface.co/...
Constrained output for LLMs, e.g., outlines library for vllm which forces models to output json/pydantic schemas, is cool!
But, because output tokens cost much more latency than input tokens, if speed matters: bespoke, low-token output formats are often better.
Constrained output for LLMs, e.g., outlines library for vllm which forces models to output json/pydantic schemas, is cool!
But, because output tokens cost much more latency than input tokens, if speed matters: bespoke, low-token output formats are often better.
𝐯𝐋𝐋𝐌 𝐟𝐨𝐫 𝐁𝐞𝐠𝐢𝐧𝐧𝐞𝐫𝐬 𝐏𝐚𝐫𝐭 𝟐:📖𝐊𝐞𝐲 𝐅𝐞𝐚𝐭𝐮𝐫𝐞𝐬 & 𝐎𝐩𝐭𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧s
💎 What makes #vLLM the Rolls Royce of inference?
👉check it out: cloudthrill.ca/what-is-vllm...
✅ #PagedAttention #PrefixCaching #ChunkedPrefill
✅ #SpeculativeDecoding #FlashAttention #lmcache
✅ Tensor & #PipelineParallelism⚡
𝐯𝐋𝐋𝐌 𝐟𝐨𝐫 𝐁𝐞𝐠𝐢𝐧𝐧𝐞𝐫𝐬 𝐏𝐚𝐫𝐭 𝟐:📖𝐊𝐞𝐲 𝐅𝐞𝐚𝐭𝐮𝐫𝐞𝐬 & 𝐎𝐩𝐭𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧s
💎 What makes #vLLM the Rolls Royce of inference?
👉check it out: cloudthrill.ca/what-is-vllm...
✅ #PagedAttention #PrefixCaching #ChunkedPrefill
✅ #SpeculativeDecoding #FlashAttention #lmcache
✅ Tensor & #PipelineParallelism⚡
Origin | Interest | Match
🗓️ Thursday 17th 11:30 AM EDT
🎯 A chill livestream unpacking LLM #Quantization: #vllm vs #ollama. Learn about the What & How.
🔥Dope guest stars:
#bartowski from arcee.ai & Eldar Kurtic from #RedHat
🔗Stream on YouTube & Linkedin:
www.youtube.com/watch?v=XTE0...
🗓️ Thursday 17th 11:30 AM EDT
🎯 A chill livestream unpacking LLM #Quantization: #vllm vs #ollama. Learn about the What & How.
🔥Dope guest stars:
#bartowski from arcee.ai & Eldar Kurtic from #RedHat
🔗Stream on YouTube & Linkedin:
www.youtube.com/watch?v=XTE0...
📦 vllm-project / vllm
⭐ 34,172 (+145)
🗒 Python
A high-throughput and memory-efficient inference and serving engine for LLMs
📦 vllm-project / vllm
⭐ 34,172 (+145)
🗒 Python
A high-throughput and memory-efficient inference and serving engine for LLMs
🤯 Expanded model support? ✅
💪 Intel Gaudi integration? ✅
🚀 Major engine & torch.compile boosts? ✅
🔗 github.com/vllm-project...
🤯 Expanded model support? ✅
💪 Intel Gaudi integration? ✅
🚀 Major engine & torch.compile boosts? ✅
🔗 github.com/vllm-project...
| Details | Interest | Feed |
💎This, we shift from theory to practice, covering #vLLM installs across platforms? check our new blog, where we break it down in 5 sections😎#TherYouGo
𝐯𝐋𝐋𝐌 𝐟𝐨𝐫 𝐁𝐞𝐠𝐢𝐧𝐧𝐞𝐫𝐬 𝐏𝐚𝐫𝐭 𝟑:📖 𝐃𝐞𝐩𝐥𝐨𝐲𝐦𝐞𝐧𝐭 𝐎𝐩𝐭𝐢𝐨𝐧𝐬
Learn to deploy #vLLM everywhere! Even on CPU🤫
✅Platform & model Support Matrix
✅Install on GPU & CPU
✅Build Wheel from scratch | Python vLLM package
✅Docker/Kubernetes Deployment
✅Running vLLM server (Offline + Online inference)
📦 Alpha-VLLM / LLaMA2-Accessory
⭐ 489 (+174)
🗒 Python
An Open-source Toolkit for LLM Development
📦 Alpha-VLLM / LLaMA2-Accessory
⭐ 489 (+174)
🗒 Python
An Open-source Toolkit for LLM Development
📦 vllm-project / vllm
⭐ 54,301 (+143)
🗒 Python
A high-throughput and memory-efficient inference and serving engine for LLMs
📦 vllm-project / vllm
⭐ 54,301 (+143)
🗒 Python
A high-throughput and memory-efficient inference and serving engine for LLMs
#AI #Large #Language #Models #Red #Hat #AI #benchmarks #AI #optimization #enterprise
Origin | […]
#AI #Large #Language #Models #Red #Hat #AI #benchmarks #AI #optimization #enterprise
Origin | […]
"Now you can deploy Qwen3 via Ollama, LM Studio, SGLang, and vLLM — choose from multiple formats including GGUF, AWQ, and GPTQ for easy local deployment."
Find all models in the Qwen3 collection on Hugging Face @ huggingface.co/collections/...
"Now you can deploy Qwen3 via Ollama, LM Studio, SGLang, and vLLM — choose from multiple formats including GGUF, AWQ, and GPTQ for easy local deployment."
Find all models in the Qwen3 collection on Hugging Face @ huggingface.co/collections/...
📦 vllm-project / vllm
⭐ 48,168 (+100)
🗒 Python
A high-throughput and memory-efficient inference and serving engine for LLMs
📦 vllm-project / vllm
⭐ 48,168 (+100)
🗒 Python
A high-throughput and memory-efficient inference and serving engine for LLMs
📦 vllm-project / vllm
⭐ 46,215 (+128)
🗒 Python
A high-throughput and memory-efficient inference and serving engine for LLMs
📦 vllm-project / vllm
⭐ 46,215 (+128)
🗒 Python
A high-throughput and memory-efficient inference and serving engine for LLMs
Built on vLLM + Megatron-LM. Create agents that actually learn & improve.
🔥 github.com/tensorwavecl...
✨ Let's advance LLMs together
#AI #OpenSource
Built on vLLM + Megatron-LM. Create agents that actually learn & improve.
🔥 github.com/tensorwavecl...
✨ Let's advance LLMs together
#AI #OpenSource
Run Pixtral Large with multiple input images from day 0 using vLLM.
Install vLLM:
pip install -U VLLM
Run Pixtral Large:
vllm serve mistralai/Pixtral-Large-Instruct-2411 --tokenizer_mode mistral --limit_mm_per_prompt 'image=10' --tensor-parallel-size 8
Run Pixtral Large with multiple input images from day 0 using vLLM.
Install vLLM:
pip install -U VLLM
Run Pixtral Large:
vllm serve mistralai/Pixtral-Large-Instruct-2411 --tokenizer_mode mistral --limit_mm_per_prompt 'image=10' --tensor-parallel-size 8
Origin | Interest | Match
生成AIと検索技術が大躍進!
AcroquestのYAMALEXチームが贈る
アドベントカレンダー9記事を総括
🔥 必見の3記事:
・Elasticsearch高速部分一致検索
・ColQwen2 PDFマルチモーダル検索
・vLLMでLLM推論を高速化
詳細は👇
acro-engineer.hatenablog.com/entry/2024/1...
#AI #検索 #テクノロジー
生成AIと検索技術が大躍進!
AcroquestのYAMALEXチームが贈る
アドベントカレンダー9記事を総括
🔥 必見の3記事:
・Elasticsearch高速部分一致検索
・ColQwen2 PDFマルチモーダル検索
・vLLMでLLM推論を高速化
詳細は👇
acro-engineer.hatenablog.com/entry/2024/1...
#AI #検索 #テクノロジー