valeo.ai
@valeoai.bsky.social
We are a research team on artificial intelligence for automotive applications working toward assisted and autonomous driving.
--> https://valeoai.github.io/ <--
--> https://valeoai.github.io/ <--
Analyzing Fine-tuning Representation Shift for Multimodal LLMs Steering Alignment
tl;dr: a new method for understanding and controlling how MLLMs adapt during fine-tuning
by: P. Khayatan, M. Shukor, J. Parekh, A. Dapogny, @matthieucord.bsky.social
📄: arxiv.org/abs/2501.03012
tl;dr: a new method for understanding and controlling how MLLMs adapt during fine-tuning
by: P. Khayatan, M. Shukor, J. Parekh, A. Dapogny, @matthieucord.bsky.social
📄: arxiv.org/abs/2501.03012
October 17, 2025 at 10:31 PM
Analyzing Fine-tuning Representation Shift for Multimodal LLMs Steering Alignment
tl;dr: a new method for understanding and controlling how MLLMs adapt during fine-tuning
by: P. Khayatan, M. Shukor, J. Parekh, A. Dapogny, @matthieucord.bsky.social
📄: arxiv.org/abs/2501.03012
tl;dr: a new method for understanding and controlling how MLLMs adapt during fine-tuning
by: P. Khayatan, M. Shukor, J. Parekh, A. Dapogny, @matthieucord.bsky.social
📄: arxiv.org/abs/2501.03012
FLOSS: Free Lunch in Open-vocabulary Semantic Segmentation
tl;dr: a simple trick to boost open-vocabulary semantic segmentation by identifying class expert prompt templates
by: Y. Benigmim, M. Fahes, @tuanhungvu.bsky.social, @abursuc.bsky.social, R. de Charette.
📄: arxiv.org/abs/2504.10487
tl;dr: a simple trick to boost open-vocabulary semantic segmentation by identifying class expert prompt templates
by: Y. Benigmim, M. Fahes, @tuanhungvu.bsky.social, @abursuc.bsky.social, R. de Charette.
📄: arxiv.org/abs/2504.10487
October 17, 2025 at 10:30 PM
FLOSS: Free Lunch in Open-vocabulary Semantic Segmentation
tl;dr: a simple trick to boost open-vocabulary semantic segmentation by identifying class expert prompt templates
by: Y. Benigmim, M. Fahes, @tuanhungvu.bsky.social, @abursuc.bsky.social, R. de Charette.
📄: arxiv.org/abs/2504.10487
tl;dr: a simple trick to boost open-vocabulary semantic segmentation by identifying class expert prompt templates
by: Y. Benigmim, M. Fahes, @tuanhungvu.bsky.social, @abursuc.bsky.social, R. de Charette.
📄: arxiv.org/abs/2504.10487
MoSiC: Optimal-Transport Motion Trajectories for Dense Self-Supervised Learning
tl;dr: a self-supervised learning of temporally consistent representations from video w/ motion cues
by: M. Salehi, S. Venkataramanan, I. Simion, E. Gavves, @cgmsnoek.bsky.social, Y. Asano
📄: arxiv.org/abs/2506.08694
tl;dr: a self-supervised learning of temporally consistent representations from video w/ motion cues
by: M. Salehi, S. Venkataramanan, I. Simion, E. Gavves, @cgmsnoek.bsky.social, Y. Asano
📄: arxiv.org/abs/2506.08694
October 17, 2025 at 10:30 PM
MoSiC: Optimal-Transport Motion Trajectories for Dense Self-Supervised Learning
tl;dr: a self-supervised learning of temporally consistent representations from video w/ motion cues
by: M. Salehi, S. Venkataramanan, I. Simion, E. Gavves, @cgmsnoek.bsky.social, Y. Asano
📄: arxiv.org/abs/2506.08694
tl;dr: a self-supervised learning of temporally consistent representations from video w/ motion cues
by: M. Salehi, S. Venkataramanan, I. Simion, E. Gavves, @cgmsnoek.bsky.social, Y. Asano
📄: arxiv.org/abs/2506.08694
GaussRender: Learning 3D Occupancy with Gaussian Rendering
tl;dr: a module for 3D occupancy learning that enforces 2D-3D consistency through differentiable Gaussian rendering
by: L. Chambon, @eloizablocki.bsky.social, @alexandreboulch.bsky.social, M. Chen, M. Cord
📄: arxiv.org/abs/2502.05040
tl;dr: a module for 3D occupancy learning that enforces 2D-3D consistency through differentiable Gaussian rendering
by: L. Chambon, @eloizablocki.bsky.social, @alexandreboulch.bsky.social, M. Chen, M. Cord
📄: arxiv.org/abs/2502.05040
October 17, 2025 at 10:29 PM
GaussRender: Learning 3D Occupancy with Gaussian Rendering
tl;dr: a module for 3D occupancy learning that enforces 2D-3D consistency through differentiable Gaussian rendering
by: L. Chambon, @eloizablocki.bsky.social, @alexandreboulch.bsky.social, M. Chen, M. Cord
📄: arxiv.org/abs/2502.05040
tl;dr: a module for 3D occupancy learning that enforces 2D-3D consistency through differentiable Gaussian rendering
by: L. Chambon, @eloizablocki.bsky.social, @alexandreboulch.bsky.social, M. Chen, M. Cord
📄: arxiv.org/abs/2502.05040
DIP: Unsupervised Dense In-Context Post-training of Visual Representations
@ssirko.bsky.social, @vobeckya.bsky.social, @abursuc.bsky.social , N. Thome, @spyrosgidaris.bsky.social
📄: arxiv.org/abs/2506.18463
bsky.app/profile/ssir...
@ssirko.bsky.social, @vobeckya.bsky.social, @abursuc.bsky.social , N. Thome, @spyrosgidaris.bsky.social
📄: arxiv.org/abs/2506.18463
bsky.app/profile/ssir...
1/n 🚀New paper out - accepted at #ICCV2025!
Introducing DIP: unsupervised post-training that enhances dense features in pretrained ViTs for dense in-context scene understanding
Below: Low-shot in-context semantic segmentation examples. DIP features outperform DINOv2!
Introducing DIP: unsupervised post-training that enhances dense features in pretrained ViTs for dense in-context scene understanding
Below: Low-shot in-context semantic segmentation examples. DIP features outperform DINOv2!
October 17, 2025 at 10:15 PM
DIP: Unsupervised Dense In-Context Post-training of Visual Representations
@ssirko.bsky.social, @vobeckya.bsky.social, @abursuc.bsky.social , N. Thome, @spyrosgidaris.bsky.social
📄: arxiv.org/abs/2506.18463
bsky.app/profile/ssir...
@ssirko.bsky.social, @vobeckya.bsky.social, @abursuc.bsky.social , N. Thome, @spyrosgidaris.bsky.social
📄: arxiv.org/abs/2506.18463
bsky.app/profile/ssir...
PPT: Pretraining with Pseudo-Labeled Trajectories for Motion Forecasting
📄 Paper: arxiv.org/abs/2412.06491
by Y. Xu, @yuanyinnn.bsky.social, @eloizablocki.bsky.social, @tuanhungvu.bsky.social , @alexandreboulch.bsky.social, M. Cord
📄 Paper: arxiv.org/abs/2412.06491
by Y. Xu, @yuanyinnn.bsky.social, @eloizablocki.bsky.social, @tuanhungvu.bsky.social , @alexandreboulch.bsky.social, M. Cord
September 24, 2025 at 5:11 PM
PPT: Pretraining with Pseudo-Labeled Trajectories for Motion Forecasting
📄 Paper: arxiv.org/abs/2412.06491
by Y. Xu, @yuanyinnn.bsky.social, @eloizablocki.bsky.social, @tuanhungvu.bsky.social , @alexandreboulch.bsky.social, M. Cord
📄 Paper: arxiv.org/abs/2412.06491
by Y. Xu, @yuanyinnn.bsky.social, @eloizablocki.bsky.social, @tuanhungvu.bsky.social , @alexandreboulch.bsky.social, M. Cord
VaViM & VaVAM: Autonomous Driving through Video Generative Modeling
🔗 Project page: valeoai.github.io/vavim-vavam/
📄 Paper: arxiv.org/abs/2502.15672
💻 Code: github.com/valeoai/Vide...
by F. Bartoccioni, E. Ramzi, et al.
🔗 Project page: valeoai.github.io/vavim-vavam/
📄 Paper: arxiv.org/abs/2502.15672
💻 Code: github.com/valeoai/Vide...
by F. Bartoccioni, E. Ramzi, et al.
September 24, 2025 at 5:11 PM
VaViM & VaVAM: Autonomous Driving through Video Generative Modeling
🔗 Project page: valeoai.github.io/vavim-vavam/
📄 Paper: arxiv.org/abs/2502.15672
💻 Code: github.com/valeoai/Vide...
by F. Bartoccioni, E. Ramzi, et al.
🔗 Project page: valeoai.github.io/vavim-vavam/
📄 Paper: arxiv.org/abs/2502.15672
💻 Code: github.com/valeoai/Vide...
by F. Bartoccioni, E. Ramzi, et al.