Founder — Regulator E / Law E Project
Zenodo (note): https://doi.org/10.5281/zenodo.17502131
Zenodo (Commercial License V2): https://doi.org/10.5281/zenodo.17502169
ΔE↓ • C≥θ • R≥ρ → ✅
Compliance if mean(ΔE) ≤ −θε and mean(C) ≥ θC and mean(R) ≥ θR.
Auditable via EDR + seeds + scripts.
A simple standard: prove that you save energy without losing intelligence.
#Standards #Certification #ResponsibleAI #LawE
ΔE↓ • C≥θ • R≥ρ → ✅
Compliance if mean(ΔE) ≤ −θε and mean(C) ≥ θC and mean(R) ≥ θR.
Auditable via EDR + seeds + scripts.
A simple standard: prove that you save energy without losing intelligence.
#Standards #Certification #ResponsibleAI #LawE
policy[t + 1] = policyₜ + η · ∇J
The AI learns to govern itself — adjusting its way of acting to reduce wasted energy.
Conscious control = Energetic clarity.
#Reflexivity #MetaLearning #ControlTheory #LawE
policy[t + 1] = policyₜ + η · ∇J
The AI learns to govern itself — adjusting its way of acting to reduce wasted energy.
Conscious control = Energetic clarity.
#Reflexivity #MetaLearning #ControlTheory #LawE
Φ = (nodes, modules, edges, energy flows)
Visualize intelligence as a hair-like flow of energy — tracing nodes and edges to avoid tangles & losses.
#GraphEnergy #SystemsThinking #AIvisualization #LawE
Φ = (nodes, modules, edges, energy flows)
Visualize intelligence as a hair-like flow of energy — tracing nodes and edges to avoid tangles & losses.
#GraphEnergy #SystemsThinking #AIvisualization #LawE
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
[Input → Encoder → Decoder]
↳ NVML / C, R, IG / H-E Selector → stop / control / feedback → Output
The Selector orchestrates energy, coherence & output quality.
#TensorRT #CUDA #AIoptimization #LawE
[Input → Encoder → Decoder]
↳ NVML / C, R, IG / H-E Selector → stop / control / feedback → Output
The Selector orchestrates energy, coherence & output quality.
#TensorRT #CUDA #AIoptimization #LawE
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
{ workload: “tts_gpu”,
A100@rate[ΔE, C, R],
means: [0.82, 0.93, 0.27] }
Transparent reporting = trust.
#Transparency #AICompliance #LawE #EnergyAudit
{ workload: “tts_gpu”,
A100@rate[ΔE, C, R],
means: [0.82, 0.93, 0.27] }
Transparent reporting = trust.
#Transparency #AICompliance #LawE #EnergyAudit
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
R = P(rollback ≤ k)
If a state can be restored with minimal loss, it’s truly intelligent.
Resilience is an energetic virtue.
#Reliability #Resilience #MachineLearning #LawE
https://doi.org/10.5281/zenodo.17497733
R = P(rollback ≤ k)
If a state can be restored with minimal loss, it’s truly intelligent.
Resilience is an energetic virtue.
#Reliability #Resilience #MachineLearning #LawE
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
C = 1 − H(softmax(logits))
Lower entropy → higher coherence.
A system that thinks clearly is also one that saves energy.
#InformationTheory #AIresearch #LawE
C = 1 − H(softmax(logits))
Lower entropy → higher coherence.
A system that thinks clearly is also one that saves energy.
#InformationTheory #AIresearch #LawE
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
If energy consumption > ε → STOP.
A model learns not only to speak, but to stop when energy waste begins.
A new kind of eloquence: efficient reasoning.
#CUDA #TensorRT #AIOptimization #LawE
If energy consumption > ε → STOP.
A model learns not only to speak, but to stop when energy waste begins.
A new kind of eloquence: efficient reasoning.
#CUDA #TensorRT #AIOptimization #LawE
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
Every intelligent system —human or machine—must learn to govern its energy.
Law E defines a universal equation for cognitive efficiency:
→ minimize unnecessary ΔE
→ maximize Coherence (C)
→ maximize Recoverability (R)
#LawE #EnergyGovernance #SustainableAI #CognitiveSystems
Every intelligent system —human or machine—must learn to govern its energy.
Law E defines a universal equation for cognitive efficiency:
→ minimize unnecessary ΔE
→ maximize Coherence (C)
→ maximize Recoverability (R)
#LawE #EnergyGovernance #SustainableAI #CognitiveSystems
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733
https://doi.org/10.5281/zenodo.17497733